Classification of Breast cancer by comparing Back propagation training algorithms
نویسندگان
چکیده
Breast cancer diagnosis has been approached by various machine learning techniques for many years. This paper presents a study on classification of Breast cancer using Feed Forward Artificial Neural Networks. Back propagation algorithm is used to train this network. The performance of the network is evaluated using Wisconsin breast cancer data set for various training algorithms. The highest accuracy of 99.28% is achieved when using levenberg marquardt algorithm. Keywords-Breast cancer; Back propagation algorithm; Quasi-Newton.
منابع مشابه
A New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms
Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملBack Propagation Neural Network by Comparing Hidden Neurons: Case study on Breast Cancer Diagnosis
This paper investigates the potential of applying the feed forward neural network architecture for the classification of breast cancer. Back-propagation algorithm is used for training multi-layer artificial neural network. Missing values are replaced with median method before the construction of the network. This paper presents the results of a comparison among ten different hidden neuron initi...
متن کاملFast opposite weight learning rules with application in breast cancer diagnosis
Classification of breast abnormalities such as masses is a challenging task for radiologists. Computer-aided Diagnosis (CADx) technology may enhance the performance of radiologists by assisting them in classifying patterns into benign and malignant categories. Although Neural Networks (NN) such as Multilayer Perceptron (MLP) have drawbacks, namely long training times, a considerable number of C...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کامل